Source code for hive.utils.torch_utils

import numpy as np
import torch
from torch import optim

from hive.utils.registry import registry
from hive.utils.utils import LossFn, OptimizerFn, ActivationFn


[docs]def numpify(t): """Convert object to a numpy array. Args: t (np.ndarray | torch.Tensor | obj): Converts object to :py:class:`np.ndarray`. """ if isinstance(t, np.ndarray): return t elif isinstance(t, torch.Tensor): return t.detach().cpu().numpy() else: return np.array(t)
[docs]class RMSpropTF(optim.Optimizer): """ Direct cut-paste from rwhightman/pytorch-image-models. https://github.com/rwightman/pytorch-image-models/blob/f7d210d759beb00a3d0834a3ce2d93f6e17f3d38/timm/optim/rmsprop_tf.py Licensed under Apache 2.0, https://github.com/rwightman/pytorch-image-models/blob/master/LICENSE Implements RMSprop algorithm (TensorFlow style epsilon) NOTE: This is a direct cut-and-paste of PyTorch RMSprop with eps applied before sqrt and a few other modifications to closer match Tensorflow for matching hyper-params. Noteworthy changes include: 1. Epsilon applied inside square-root 2. square_avg initialized to ones 3. LR scaling of update accumulated in momentum buffer Proposed by G. Hinton in his `course <http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_. The centered version first appears in `Generating Sequences With Recurrent Neural Networks <https://arxiv.org/pdf/1308.0850v5.pdf>`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-2) momentum (float, optional): momentum factor (default: 0) alpha (float, optional): smoothing (decay) constant (default: 0.9) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-10) centered (bool, optional) : if ``True``, compute the centered RMSProp, the gradient is normalized by an estimation of its variance weight_decay (float, optional): weight decay (L2 penalty) (default: 0) decoupled_decay (bool, optional): decoupled weight decay as per https://arxiv.org/abs/1711.05101 lr_in_momentum (bool, optional): learning rate scaling is included in the momentum buffer update as per defaults in Tensorflow """ def __init__( self, params, lr=1e-2, alpha=0.9, eps=1e-10, weight_decay=0, momentum=0.0, centered=False, decoupled_decay=False, lr_in_momentum=True, ): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= momentum: raise ValueError("Invalid momentum value: {}".format(momentum)) if not 0.0 <= weight_decay: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) if not 0.0 <= alpha: raise ValueError("Invalid alpha value: {}".format(alpha)) defaults = dict( lr=lr, momentum=momentum, alpha=alpha, eps=eps, centered=centered, weight_decay=weight_decay, decoupled_decay=decoupled_decay, lr_in_momentum=lr_in_momentum, ) super(RMSpropTF, self).__init__(params, defaults) def __setstate__(self, state): super(RMSpropTF, self).__setstate__(state) for group in self.param_groups: group.setdefault("momentum", 0) group.setdefault("centered", False)
[docs] @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: for p in group["params"]: if p.grad is None: continue grad = p.grad if grad.is_sparse: raise RuntimeError("RMSprop does not support sparse gradients") state = self.state[p] # State initialization if len(state) == 0: state["step"] = 0 state["square_avg"] = torch.ones_like(p) # PyTorch inits to zero if group["momentum"] > 0: state["momentum_buffer"] = torch.zeros_like(p) if group["centered"]: state["grad_avg"] = torch.zeros_like(p) square_avg = state["square_avg"] one_minus_alpha = 1.0 - group["alpha"] state["step"] += 1 if group["weight_decay"] != 0: if group["decoupled_decay"]: p.mul_(1.0 - group["lr"] * group["weight_decay"]) else: grad = grad.add(p, alpha=group["weight_decay"]) # Tensorflow order of ops for updating squared avg square_avg.add_(grad.pow(2) - square_avg, alpha=one_minus_alpha) # square_avg.mul_(alpha).addcmul_(grad, grad, value=1 - alpha) # PyTorch original if group["centered"]: grad_avg = state["grad_avg"] grad_avg.add_(grad - grad_avg, alpha=one_minus_alpha) avg = ( square_avg.addcmul(grad_avg, grad_avg, value=-1) .add(group["eps"]) .sqrt_() ) # eps in sqrt # grad_avg.mul_(alpha).add_(grad, alpha=1 - alpha) # PyTorch original else: avg = square_avg.add(group["eps"]).sqrt_() # eps moved in sqrt if group["momentum"] > 0: buf = state["momentum_buffer"] # Tensorflow accumulates the LR scaling in the momentum buffer if group["lr_in_momentum"]: buf.mul_(group["momentum"]).addcdiv_( grad, avg, value=group["lr"] ) p.add_(-buf) else: # PyTorch scales the param update by LR buf.mul_(group["momentum"]).addcdiv_(grad, avg) p.add_(buf, alpha=-group["lr"]) else: p.addcdiv_(grad, avg, value=-group["lr"]) return loss
registry.register_all( OptimizerFn, { "Adadelta": optim.Adadelta, "Adagrad": optim.Adagrad, "Adam": optim.Adam, "Adamax": optim.Adamax, "AdamW": optim.AdamW, "ASGD": optim.ASGD, "LBFGS": optim.LBFGS, "RMSprop": optim.RMSprop, "RMSpropTF": RMSpropTF, "Rprop": optim.Rprop, "SGD": optim.SGD, "SparseAdam": optim.SparseAdam, }, ) registry.register_all( LossFn, { "BCELoss": torch.nn.BCELoss, "BCEWithLogitsLoss": torch.nn.BCEWithLogitsLoss, "CosineEmbeddingLoss": torch.nn.CosineEmbeddingLoss, "CrossEntropyLoss": torch.nn.CrossEntropyLoss, "CTCLoss": torch.nn.CTCLoss, "HingeEmbeddingLoss": torch.nn.HingeEmbeddingLoss, "KLDivLoss": torch.nn.KLDivLoss, "L1Loss": torch.nn.L1Loss, "MarginRankingLoss": torch.nn.MarginRankingLoss, "MSELoss": torch.nn.MSELoss, "MultiLabelMarginLoss": torch.nn.MultiLabelMarginLoss, "MultiLabelSoftMarginLoss": torch.nn.MultiLabelSoftMarginLoss, "MultiMarginLoss": torch.nn.MultiMarginLoss, "NLLLoss": torch.nn.NLLLoss, "NLLLoss2d": torch.nn.NLLLoss2d, "PoissonNLLLoss": torch.nn.PoissonNLLLoss, "SmoothL1Loss": torch.nn.SmoothL1Loss, "SoftMarginLoss": torch.nn.SoftMarginLoss, "TripletMarginLoss": torch.nn.TripletMarginLoss, }, ) registry.register_all( ActivationFn, { "ELU": torch.nn.ELU, "Hardshrink": torch.nn.Hardshrink, "Hardsigmoid": torch.nn.Hardsigmoid, "Hardtanh": torch.nn.Hardtanh, "Hardswish": torch.nn.Hardswish, "LeakyReLU": torch.nn.LeakyReLU, "LogSigmoid": torch.nn.LogSigmoid, "MultiheadAttention": torch.nn.MultiheadAttention, "PReLU": torch.nn.PReLU, "ReLU": torch.nn.ReLU, "ReLU6": torch.nn.ReLU6, "RReLU": torch.nn.RReLU, "SELU": torch.nn.SELU, "CELU": torch.nn.CELU, "GELU": torch.nn.GELU, "Sigmoid": torch.nn.Sigmoid, "SiLU": torch.nn.SiLU, "Softplus": torch.nn.Softplus, "Softshrink": torch.nn.Softshrink, "Softsign": torch.nn.Softsign, "Tanh": torch.nn.Tanh, "Tanhshrink": torch.nn.Tanhshrink, "Threshold": torch.nn.Threshold, "GLU": torch.nn.GLU, "Softmin": torch.nn.Softmin, "Softmax": torch.nn.Softmax, "Softmax2d": torch.nn.Softmax2d, "LogSoftmax": torch.nn.LogSoftmax, "AdaptiveLogSoftmaxWithLoss": torch.nn.AdaptiveLogSoftmaxWithLoss, }, ) get_optimizer_fn = getattr(registry, f"get_{OptimizerFn.type_name()}") get_loss_fn = getattr(registry, f"get_{LossFn.type_name()}") get_activation_fn = getattr(registry, f"get_{ActivationFn.type_name()}")